End Term Assessment– May 2020 Semester –IV (B.Tech-CSE -(BDA/ CMBA/ DS AI))

Subject Code: CS 2004 / CS0204 Subject Name: Theory of Computation Max. Marks: 50 Duration: <mark>2 hours (including time for uploading)</mark> (10 Minutes Max Grace time)

Instructions:

- Write name and registration number, page number on all the pages, convert into one PDF, tag it with your registration number_Name_subject code_subject title.
- The Assessment consists of 2 sections
 - Part A contains **10 questions of 2 marks** each and all questions are compulsory.
 - Part B consists of <mark>4 questions of 10 marks each</mark>, out of which <mark>3 questions</mark> to be attempted.
- Hand written responses to be submitted/uploaded as scanned pages of answer sheets (max. 5 pages) within the mentioned duration. DON'T EXCEED THE WORD LIMIT AND UPLOAD PDF TIMELY.

PART – A

2 * 10 =20 Marks (Each answer- Word Limit- 50 Words)

- **1.** Which FA has $QX\Sigma \rightarrow 2^{Q}$ as a transition function and why?
- 2. Construct an NFA for the regular expression 01*+1.
- 3. Why we don't want an ambiguous grammar?
- 4. What is the procedure to eliminate the nullable production?
- 5. Define regular grammar. Which type of grammar is it?
- 6. Explain the mapping of transition function of PDA.
- 7. What does the ID of a PDA represents?
- 8. Mention the automaton's which have external memory.
- 9. Which problem determines the answer of some instance of problem in yes or no? Explain.
- **10. Explain recursively enumerable language.**

PART – B

3*10 = 30 Marks (Each answer- Word limit- 250 words)

11. Convert the following NFA with \mathcal{E} - moves to NFA without it: i) δ (q0, 0) \rightarrow q0ii) δ (q0, \mathcal{E}) \rightarrow q1iii) δ (q1, 1) \rightarrow q1iv) δ (q1, \mathcal{E}) \rightarrow q2v) δ (q2, 2) \rightarrow q2

12. Convert the following grammar G= ({A₁, A₂, A₃}, {a,b}, P, A₁) into GNF where P is: A₁ \rightarrow A₂A₃ A₂ \rightarrow A₃A₁|b A₃ \rightarrow A₁A₂|a

13. Construct a turing machine to perform proper subtraction. Draw diag. and ID's.

14. Construct a PDA (diag and tuples also) from CFG G where productions are: δ (q0, a, z0) \rightarrow (q0, a z0), δ (q0, a, a) \rightarrow (q0, a a) , δ (q0, b, a) \rightarrow (q1, ϵ) , δ (q1, b, a) \rightarrow (q1, ϵ) , δ (q1, ϵ , a) \rightarrow (q1, ϵ) , δ (q1, ϵ , z0) \rightarrow (q1, ϵ)